

UNIVERSITY of HOUSTON

Sand, shale, and steam: Imaging reservoirs with full-wave seismic methods

Virginia Mason Lumina Mouna Gargouri Sigma³ Tania Mukherjee Shell Research Robert Stewart AGL

COLLEGE OF NATURAL SCIENCES & MATHEMATICS

UNIVERSITY of HOUSTON

Full-wave seismic exploration: A tale of three cases

- Tenerife oilfield, Colombia: 3C seismic tests and sand indicators (Mason, M.S., 2013)
- Marcellus shale: Shale quality characterization (Gargouri, M.S., 2012)
- Steam monitoring in Oman (Mukherjee, Ph.D., 2013)

Tenerife oilfield, Colombia – find the sand

Location of the Middle Magdalena Valley Basin, the Tenerife 3D-3C survey area (~29 km²), 2D-3C line and wells available (modified from Gomez et. al. 2005).

Tenerife 2D-3C test lines – acquisition parameters

	A1	A2	A3	A4	A5
Hole Depth (m)	10	15	15	15	20
Charge (kg)	2.7	1.8	3.6	4.5	2.7
Source Interval (m)	40	150	150	150	150
Receiver Interval (m)	10	10	10	10	10
Minimum Offset (m)	4.25	4.25	4.25	4.25	4.25
Maximum Offset (m)	7525	7525	7525	7525	7525
Nominal Fold	150	38	38	38	38

Table providing the different source intervals, shot size, and emplacement depth

Tenerife 2D-3C

2D-3C Processing:

Data preparation

Schematic figure of 3C recording (top – from ION processing report) ; shot gather examples for the three components (right).

Source spacing influence

Tenerife 2D-3C

Results : Vertical channel

Geophone Depth = 10cm Charge = 2.7 kg Source Interval = 40m Nominal Fold = 150

= 10m

Source spacing influence

= 10m

= 2.7 kg

= 150m

Tenerife 2D-3C

Results : Vertical channel

Source depth influence

= 20m

= 2.7 kg

= 150m

Tenerife 2D-3C

Results : Vertical channel

Source size influence

Tenerife 2D-3C

Results : Vertical channel

= 4.5kg Source Interval = 150m Nominal Fold = 38

= 15m

Tenerife 2D-3C

<u>Results</u>: Vertical channel

 Amazingly, increasing the fold, source size, source and receiver depth has only a small effect on the P-wave section quality (continuity, resolution)!

Tenerife 2D-3C

Radial – Statics (scaled vs refraction)

Source spacing influence

Tenerife 2D-3C

<u>Results</u> : Radial channel

Source spacing influence

= 150

Tenerife 2D-3C

Results : Radial channel

Interpretation

Cross-plots from well logs

Interpretation

<u>Vp/Vs</u> : High resolution map

PP impedance along an arbitrary line

Interpretation

<u>Vp/Vs</u> : High resolution map

Vp/Vs for a horizon map coincident with the top of Mugrosa-B Formation over imposed to the structural map in PP time.

Conclusions

- For PP-waves, increasing the fold, source size, and source & receiver depths makes only a small difference.
- For PS-waves, huge improvements are observed when increasing the <u>fold</u>, source size and depth (and using S-S refraction statics
- Joint 3D PP and PS inversion and interpretation give detailed new leads
- Muchas gracias a Ecopetrol y Dr. Agudelo

Bradford 3C-3D Pennsylvania

Well logs from the Marcellus shale – anomalous Vp/Vs

PP and PS Sections: Bradford 3C-3D

From Gaiser, 2011; Gargouri, 2012 – UH M.S. thesis

Bradford 3C-3D seismic survey – Vp/Vs over Marcellus interval

Data generously provided by Geokinetics, Geophysical Pursuit, Chesapeake

TOC vs. Velocity and Bulk Density (Bakken shale)

(Data from Vernik and Nur, 1992)

Velocities and bulk density decrease with TOC increase. So the seismic reflectivity is affected by the organic richness of shales.

Can we use elasticity and anisotropy to better characterize shale?

$Q_{\rm PS}$ and petrophysical properties

Permeability

Using spectral seismic values for lithology

*

Q values from Ross Lake VSP

From Best et al., 1994; Calderon-Macias et al., 2004; and Zhang & Stewart, 2012

Summary – Shale geophysics

- Vast hydrocarbon resource in shales
- Pressing E & P issues (economic, geologic, environmental, political)
- Geophysics can provide
 - structural & stratigraphic image of subsurface
 - TOC and brittleness indicators
 - Hydraulic fracture mapping
 - Follow-on monitoring

We recommend ...

Enhanced Oil Recovery - Oman

Heavy & Extra Heavy Oil

Total World Oil Reserves

EOR by Steam injection

Study area

EOR field, Oman (PDO & Shell) Steam injection , 4D Monitor area. API 19°

Objective

Predicted Velocity

From logs

Establish $V_P V_s$ relatioship

V_P= +5477.116*density -9074.37 V_S = + 0.73565 V_P - 537.8

- Used Gassmann substitution and FLAG modeling.
- V_P/V_S decreases for steam injection interval.
- Changes are extrapolated laterall to VSP well.

V. Monitor (computed)

Scenarios vs Reference model

Temperature profiles and maps of Reference Model for two time vintages

Monitor 2010

Scenarios having same porosity but different permeability distribution

- Scenario S2: Horizontal permeabilities for the top few layers within the reservoir are overwritten to 10 D.
- Scenario S3: Horizontal permeabilities (top thick)
- *Scenario S4*: Horizontal permeabilities (top thin).
- Scenario S5: Scaled version of S3 (top thick)
- Scenario S6: Scaled version of S4 (top thin)
- Scenario Sb: There are many 0.5 m thick baffles

Compare (temperature and 4D attributes)

Comparison with field VSP

PP imaging migrated

Comparison with real data

Depth (m)

Comparison with real data

Line extracted from Field VSP 60 ms RRR window

EW synthetic VSP (60ms RRR window)

(40ms RRR window)

Moving to converted waves

Summary

- Time-lapse anomalies are predicted from reservoir simulations and fluid substitution modeling
- Field VSP data shows anomalies that are simialr to those predicted
- Converted-wave data show promise
- Thank you to Shell & PDO for releasing these data